
Universal Cycles of Restricted Words

KB Gardner, Anant Godbole
East Tennessee State University

zbgg2@etsu.edu, godbolea@etsu.edu

Abstract

A connected digraph in which the in-degree of any vertex equals
its out-degree is Eulerian; this baseline result is used as the basis
of existence proofs for universal cycles (also known as generalized
deBruijn cycles or U-cycles) of several combinatorial objects. We
extend the body of known results by presenting new results on the
existence of universal cycles of monotone, “augmented onto”, and
Lipschitz functions in addition to universal cycles of certain types of
lattice paths and random walks.

1 Introduction

A universal cycle, or U-Cycle, is a cyclic ordering of a set of objects C,
each represented as a string of length k. The ordering requires that ob-
ject b = b0b1 . . . bk−1 follow object a = a0a1 . . . ak−1 only if a1a2 . . . ak−1 =
b0b1 . . . bk−2. U-cycles were originally introduced in 1992 by Chung, Diaco-
nis, and Graham [5] as generalizations of de Bruijn cycles. As an example,
the cyclic string 112233 encodes each of the six multisets of size 2 from the
set [3]:={1, 2, 3}. Another well-quoted example, from [8], is the string

1356725 6823472 3578147 8245614 5712361 2467836 7134582 4681258,

where each block is obtained from the previous one by addition of 5 modulo
8. This string is an encoding of the 56 =

(
8
3

)
3-subsets of the set [8] =

{1, 2, 3, 4, 5, 6, 7, 8}. Chung, Diaconis and Graham [5] studied U-Cycles of

• subsets of size k of an n-element set (as in the above example);

• set partitions; and

• permutations (with a necessarily augmented ground set and the use
of order isomorphism representations, e.g., the string 124324 encodes

1

ar
X

iv
:1

71
1.

07
02

9v
1

 [
m

at
h.

C
O

]
 1

9
N

ov
 2

01
7

each of the six permutations of [3] = {1, 2, 3} in an order isomorphic
fashion, which is impossible using the ground set [3]).

DeBruijn’s Theorem states that U-Cycles of k-letter words on an n-letter
alphabet exist for all k and n, as evidenced for k = 3, n = 2 by the cycle
11101000. The proof of this theorem relies upon the fact that a connected
digraph is Eulerian if and only if the in-degree of each vertex equals the out
degree; in other words, the graph is balanced. Many of the recent results
on the existence of U-Cycles involve words as above, but with restrictions.
We next summarize some of these results, focusing on work that has been
done at the East Tennessee State University REU, and in the ETSU course
MATH 4010, over the last few years. To set the stage, we recall one of the
early papers in the area: Jackson [9] had proved that

Theorem 1. U-Cycles exist of all one-to-one functions from [k] to [n], i.e.,
of k-letter words over [n] in which no letter repeats, provided that k < n –
but not otherwise.

An example with k = 2 and n = 3 is provided by ABCBAC. The
fact that U-Cycles do not exist when k = n follows from the fact noted
above about permutations, and the pigeonhole principle makes the problem
meaningless for k > n. Seeking to create an analog for onto functions,
ETSU undergraduates Bechel and LaBounty-Lay [11] proved, generalizing
the example 110100 for k = 3, n = 2, that

Theorem 2. U-cycles exist for all onto functions from [k] to [n], i.e., for
k-letter words over [n] that exhaust the alphabet, provided that k > n but
not otherwise.

They also proved, in a result that foreshadows Theorems 4 and 11 below
as well as one of the main results, Theorem 21, of Section 2, that

Theorem 3. U-Cycles exist for words of length k ≡ 1 (mod 2) from {0, 1}
with dk/2e zeros and bk/2c ones (or vice versa). Moreover, U-Cycles of
words of length k ≡ 0 (mod 2) from {0, 1} with an equal number of zeros
and ones do not exist.

When k = 3, Theorem 3 is exemplified by the cycle 011010. An REU
student, Arielle Leitner, proved the following four results in [12], including
the following generalization of Theorem 3.

Theorem 4. U-Cycles of equitable k-letter words on [n], i.e., words whose
“alphabet composition” is as evenly distributed as possible over [n] exist iff
k 6≡ 0 (mod n).

2

Theorem 5. U-Cycles of “almost onto” functions (i.e., functions whose
range excludes one point in the codomain) from [n] to [n] exist for n ≥ 3.
Likewise U-Cycles of non-bijections on [n] exist. (These are respectively U-
Cycles of n-letter words on [n] that either are missing one letter, or which
do not contain all letters.)

Competition rankings are ones in which ties are possible, leading to some
ranks being eliminated. For example, 21245 is a ranking of five contestants
A,B,C,D,E in which B wins; A and C are tied for second place; third
place is taken up by the tie for second; and D,E rank 4 and 5 respectively.
Such ordered rankings clearly represent words with restrictions.

Theorem 6. U-cycles of competition rankings for n players exist for each
n ≥ 2.

The work of Horan and Hurlbert [6] is related to but distinct from
Theorem 6.

Strong passwords are length k words on [n] such that [n] = ∪qj=1Ai;Ai∩
Aj = ∅, and the word contains at least one element from each Ai.

Theorem 7. U-Cycles of strong passwords as defined above exist as long
as k ≥ 2q.

Graphs on k labeled vertices are, after all, words of length
(
k
2

)
on {0, 1}

and should thus admit a U-Cycle by deBruijn’s theorem. However in [2],
2008 REU students Brockman, Kay and Snively proved that

Theorem 8. There is a U-Cycle of all graphs on k vertices that uses just

the alphabet [k] rather than
[(

k
2

)]
.

In addition, they proved that

Theorem 9. On k vertices, trees, graphs with m edges, graphs with loops,
graphs with multiple edges (with up to m duplications of each edge), directed
graphs, hypergraphs, and r-uniform hypergraphs all admit U-Cycles.

As noted by RET teachers Champlin and Tomlinson in [4], the fact that
A admits a U-Cycle does not imply that AC does. However, they proved, in
a series of results similar in spirit to Theorem 5, and which complemented
Theorems 1, 2, 6, and 7 (and using the notation from those theorems) that

Theorem 10.

(a) There exists a U-Cycle of non-injective functions if k ≥ 4.

3

(b) There exists a U-Cycle of non-surjective functions if k ≥ n > 2.

(c) There exists a U-Cycle of illegal rankings if n 6= 1, 3.

(d) There exists a U-Cycle of non-strong passwords if q ≥ 3.

The work of Antonio Blanca [1] moved the agenda in a different direc-
tion. First, he generalized Theorem 3 by proving that

Theorem 11. U-Cycles of binary words of weight between s and t, where
1 ≤ s < t ≤ k, exist; using the binary coding, these are the same as U-
Cycles of subsets of size in the interval [s, t].

Blanca also proved an extension of Theorem 11 for arbitrary alphabet
sizes and words on that alphabet with weight in a specified range. He
proved results on Sperner families and chains of subsets, in work that was
generalized in Theorem 13 below. Most relevant to this paper, however, he
proved a result on lattice paths of length n that we will extend in Section
3.

Theorem 12. There exists a U-Cycle of lattice paths of length n on the
rectangular integer lattice in the plane, which begin at the origin, and con-
sisting of steps of moves in the 4 standard directions {N,S,E,W}, and
which end up at a distance ≤ k from the origin.

Note that this result is about words on a 4-letter alphabet in which the
composition of the word is restricted by the equation

|#N −#S|+ |#E −#W | ≤ k.

Graduate students Bill Kay and Andre Campbell [3] proved results on
words with weight in a range that improved the above-mentioned results
of Blanca [1], but they also extended deBruijn’s theorem in a different
direction:

Theorem 13. U-cycles exist for the assignment of elements of [n] to the
sets in any labeled subposet of the Boolean lattice; de Bruijn’s theorem corre-
sponds to the case when the subposet in question consists of a single ground
element.

Significantly, Theorem 13 was (though this is not obvious) a statement
of U-Cycles of suitably restricted words. The agenda in this paper was
continued by King, Laubmeier, and Orans [10], who proved, in another
result in which the connection to words is not obvious:

Theorem 14. U-Cycles exist for all naturally labeled posets on n-elements.

4

In [5], it was shown that U-Cycles exist for the partitions of an n-element
set into an arbitrary number of parts if n ≥ 5. An example of such a
U-Cycle, for n = 5 is the following:

DDDDDCHHHCCDDCCCHCHCSHHSDSSDSSHSDDCH

SSCHSHDHSCHSJCDC,

where, e.g. the 5-letter word HCCDD represents the partition 1|23|45.
Not much was known, however, about partitions of an n-element set into
a fixed number of parts. Improving and extending key work of ETSU
undergraduates Elks and McInturff who focused on the case k = 2, 3, REU
students Higgins, Kelley and Sieben [7] proved:

Theorem 15. There exists an Eulerian cycle of all partitions of [n] into k
parts; 2 ≤ k < n.

They then went on to prove both positive and negative results on when
these Eulerian cycles could be “lifted” to U-Cycles.

As the reader can see, much has been done but much has yet to be
accomplished. In this paper, we consider further restrictions on words based
upon (i) the behavior of the associated discrete functions, and (ii) additional
considerations for lattice paths. These two sets of results are presented in
Sections 2 and 3 respectively. In Section 2 we will study new results in
which analytic concepts such as monotonicity, letter composition, and rates
of growth determine the set of allowable words. As mentioned, Theorem 12
will be generalized in Section 3. Some of the results in these two sections
are easier to establish than others, and this is a hallmark of the theory.

2 New U-Cycles of Discrete Functions

In this section, we deal with U-Cycles of words that mirror standard growth
criteria from Calculus (e.g., monotonicity, Lipschitzness, etc.)

2.1 Monotone Non-Decreasing words.

For the 26-letter English alphabet, words that obey the standard lexico-
graphic order of their constituent letters are called monotone non-decreasing,
with a similar definition holding for monotone non-increasing words. For
brevity we will only consider non-decreasing monotone words and refer to
them simply as monotone. For example, if we use the customary order
a < b < c < . . . < z, then the word aaabbccgglln is monotone, while the

5

word aaabbggcclln is not. Since we wish to incorporate cyclic arrangements,
we say more generally that a word on an alphabet a1 < a2 < . . . < an is
monotone if it has a cyclic rearrangement (α1, . . . , αk) with αi ≤ αi+1 for
each i. For example, gggkklabf is monotone via the cyclic rearrangement
abfgggkkl, while gggkklabl is not, because l � g.

Theorem 16. U-Cycles of k-letter monotone words on an ordered n-letter
alphabet exist for all k and n.

Proof. Consider the alphabet with lexicographic order: a1 < a2 < . . . < an.
We assume that n ≥ 3, since if n = 2 all words are monotone and deBruijn’s
theorem applies. As is customary, we create a digraph D with vertices being
words of length k − 1 that can be extended to a monotone word, and with
there being an edge from one vertex to another if the last k − 2 letters of
the first coincide with the first k − 2 letters of the second. First, we show
that this digraph is balanced. For vertices of length ≥ 2, there will be a
first letter ai and a last letter aj . There are two possibilities: either ai ≤ aj
or ai > aj .

Suppose that ai ≤ aj . Then the possible letters that can be appended
to our word as a suffix are all those letters as such that aj ≤ as ≤ an or
a1 ≤ as ≤ ai, i.e., letters in the range (ai, aj) are disallowed. Therefore, the
number of possible letters that can be appended as a suffix, i.e., out-degree,
is i + (n − j) + 1. Next, consider adding a prefix instead of a suffix. As
before, the possible letters that can be appended to our word as a prefix are
all those letters ap such that j ≤ p ≤ n or 1 ≤ p ≤ i. Thus the in-degree is
also i+ (n− j) + 1, and it follows that D is balanced.

Suppose that ai > aj . Then the possible letters that can be appended
to our word as a suffix are all those letters as such that aj ≤ as ≤ ai, so
that the out-degree is i− j + 1 In a similar fashion, the in-degree can also
be checked to be i− j + 1, and thus D is balanced.

Second, we show that the D is connected. It is sufficient to show that
the graph is weakly connected by exhibiting a path from any vertex to the
constant monotone word a1 . . . a1. As before, either ai ≤ aj or ai > aj .

Suppose that ai ≤ aj . In this case, we know that letters as such that
1 ≤ s ≤ i are allowed suffixes. So we begin with our first word and add a
suffix of the letter a1. The resulting word will end in a1 and begin with a
letter whose index is p ≥ 1, and so we can append another a1 as a suffix.
Continuing in this fashion, we get the target word composed entirely of the
letter a1, since appending the letter a1 is always allowable. Suppose that
ai > aj . In this case, we can append any letter as with aj ≤ as ≤ ai, so we
add one aj , and then another, and so on until we have a word of length k−1

6

composed entirely of the letter aj . Now, since the index of the first and
last letters are equal, we may append any letter we like as a suffix, so we
append an a1, and then another, and so on until we have a word of length
k−1 composed entirely of a1’s. Thus, the digraph is weakly connected and
balanced, and so it is Eulerian, ergo a U-Cycle exists, by considering the
concatenation of the edge labels in the Eulerian cycle.

2.2 Small constructions.

We next offer some small constructions for U-Cycles on monotone words.

Consider the binary alphabet. It is trivial to show that a U-Cycle exists
for words of length 2 and 3 on the binary alphabet (all words of these lengths
are monotone). Consider words of length four on the binary alphabet. The
words 0101 and 1010 are not monotone, but the rest are. We begin with
the edge 0000 and trace the Eulerian path as follows

0000→ 0001→ 0010→ 0100→ 1001→ 0011→ 0111

→ 1111→ 1110→ 1101→ 1011→ 0110→ 1100→ 1000,

so the resulting U-Cycle is 00010011110110.

Consider the alphabet {A,B,C}. It is trivial to show that a U-Cycle
exists for words of length 2 on this alphabet (all words of length 2 are
monotone). Consider words of length 3. The words ACB, CBA, and BAC
are not monotone. Once again we work with edge labels and construct the
U-Cycle as follows:

AAA→ AAB → ABA→ BAB → ABB → BBB → BBC → BCC

→ CCB → CBC → BCB → CBB → BBA→ BAA→ AAC → ACA

→ CAC → ACC → CCC → CCA→ CAB → ABC → BCA→ CAA,

so that the resulting U-Cycle is AABABBBCCBCBBAACACCCABCA.

2.3 Lipschitz Words

A Lipschitz function f : R → R is one for which |f(y) − f(x)| ≤ C|y − x|
for all x and y, where C is a constant independent of x and y. In other
words, the values of f for successive integers x and x+ 1 differ by at most
C. Now, consider analogously a k-letter word (α1, . . . , αk) on the ordered
and cyclic alphabet a1 < a2 < . . . < an in which each successive letter is
within c letters of the preceding one. We call such strings Lipschitz words.

7

Theorem 17. A U-Cycle of k-letter Lipschitz Words on an n-letter alpha-
bet exists for all k and n.

Proof. First, we show that the resulting digraph is balanced. Consider a
Lipschitz word of length k − 1. We construct digraph edges by appending
allowable suffixes and prefixes to the word. By definition, the value of
each allowable suffix may vary by at most c from the last letter in our
word. Since we can move c letters in either direction, and since we can
also repeat the same letter, the number of possible suffixes for a vertex,
and therefore the out-degree on our digraph, is 2c + 1. Similarly, allowed
prefixes are under the same restriction, so the number of possible prefixes
for a Lipschitz word, and therefore the in-degree on our digraph, is also
2c+ 1, proving balancedness.

To show connectedness, consider a Lipschitz word of length k− 1 which
begins with the letter ai and ends with the letter aj . Note that we can
move from this word to another word that begins with aj±r such that r ≤ c
by simply appending aj±r, r ≤ c as a suffix. Assume we want to arrive at
a target word whose first letter is aj±m, such that m > c. Since m > c, we
can write m as a sum: c + . . . + c + d = m, where d ≤ c. So, to construct
the required word, we first add a letter aj±c in the appropriate ‘direction’
(addition for increasing value, subtraction for decreasing), continuing until
the difference between the last letter of penultimate word and the first letter
of the target word is d ≤ c, which we can reach in a single step. We then
construct the rest of the word by repeating the above process.

Since the digraph is connected and balanced, it is Eulerian, and thus a
U-Cycle exists as claimed.

2.4 Cyclically Appearing Word Categories

Several of the papers mentioned in Section 1 contain results on U-cycles for
words which must contain at least one letter from a set of categories. In
this subsection, we ask that these letters alternate, thus providing U-Cycles
for an analog of functions whose graphs follow a “zig-zag” pattern. In [4],
Champlin and Tomlinson had proved

Theorem 18. There exists a U-Cycle of alternating k-letter words on a
n = nv+nc-letter alphabet that consists of nv “vowels” and nc “consonants”
if either k is even, or if k is odd and nv = nc.

If we think of vowels and consonants as categories, we may also consider
words constructed of letters separated into c ordered disjoint categories,
such that each subsequent letter “cycles” to the next category. That is, if

8

the first letter belongs to C1, the next letter belongs to C2, and so on to
Cc, and then the order cycles again.

Theorem 19. A U-Cycle of k-letter words on an n-letter alphabet that
cycles through each of c different disjoint categories of letters C1, C2, . . . , Cc

exists if k = ac+ 2 for a ∈ N.

Proof. As always, if edge words are of length ac+ 2, then vertex words will
be of length ac+ 1.

Consider whether an edge word of length c+ 1 is possible (in this case,
we think of a as being 1.) It will be associated with vertex words of length c.
Without loss of generality, such a word will be of the form l1,C1

l2,C2
...lc,Cc

,
where lj,Cj ∈ Cj . Since |C1| is not necessarily equal to |Cc|, we cannot
claim a balanced digraph for words of length c. It follows that words of
length ac, simply some multiple of c, will also not necessarily be balanced.

Now, consider an edge word of length c + 2, associated with a vertex
words of length c + 1. Without loss of generality, such a word will be of
the form l1,C1

l2,C2
...lc,Cc

lc+1,C1
. In particular, since l1,C1

, lc+1,C1
∈ C1,

i(v) = o(v), and thus the graph is balanced. It follows that the same will
hold for any multiple of c, hence the graph is balanced for words of length
ac+ 2.

If two letters li, lj ∈ C`, we say that they have a shared condition.
Similarly, li ∈ Cm, lj ∈ C` will be said to have different conditions.

In order to construct a new word on our digraph from an existing one,
we have shown that the first and last letters of our vertex words must have
a shared condition, and the new vertex word we are constructing must also
begin and end with letters of shared condition. Without loss of generality,
consider the first letter of a vertex word. There are two possibilities: either
the first letter of our target word has a shared condition with the first letter
of our starting word, or it does not.

If it does not, then the first letter of the target word can be appended
to the end of our vertex word as normal after cycling the word around as
needed, and the target vertex word constructed one letter at a time.

If the first letter of our new vertex word does have a shared condition
with the first letter of our current word, simply append placeholder letters
with different condition until the correct first letter can be added. From
here we construct the new vertex word as before. Thus, the digraph is
connected.

9

2.5 Application: Random Walks on the Honeycomb
Lattice

One might wonder in what “practical” situation one has equal numbers of
vowels and consonants that must alternate as in Theorem 18. In this sub-
section, we provide a concrete illustration, namely walks on the honeycomb
lattice. The notion of “lattice paths,” studied in Section 3, is difficult to pin
down on the honeycomb lattice due to the lack of a well-defined Cartesian
coordinate system, but it is interesting to consider the set of random walks
on the honeycomb lattice pictured in Figure 1.

Figure 1: Honeycomb Lattice.

It is useful to define the directions a walk can take. A honeycomb
lattice is similar to a three-dimensional space, but each “step” taken on the
honeycomb limits the directions in which one can “step” next. We define
the three directions in terms of the three “axes” of the lattice: x, y, and
z. Then, each of these is coupled with a direction to fill the alphabet we
will use to compose honeycomb lattice walks. Thus, our alphabet is defined
as {x+, x−, y+, y−, z+, z−}. Since we are not using cartesian coordinates,
it is not necessary to define an “origin.” The origin will simply be the
arbitrary vertex where the walk begins. Since each “step” in the walk
must be followed by a specific array of next “steps,” we list the possible
next steps in Table 1. In particular, note that the signs must alternate
along our walk, and so the analogy with alternating vowels and consonants
is complete when we consider the three letters x+, y+, and z+ to be the
vowels and the others to be the consonants.

10

Last Next
x+ {x−, y−, z−}
x− {x+, y+, z+}
y+ {x−, y−, z−}
y− {x+, y+, z+}
z+ {x−, y−, z−}
z− {x+, y+, z+}

Table 1: Permitted steps.

Theorem 20. A universal cycle of random walks on the honeycomb lattice
of length n exists for all n.

Proof. A simple application of Theorem 18; it would be interesting to see
which other more complicated graphs, or lattices in d-dimensions, lend
themselves to an analysis that would culminate in the conclusion that ran-
dom walks on that graph/lattice are U-cyclable via Theorems 18 or 19.

2.6 Augmented Onto Words

Generalizing the notion of onto words, consider a word in which every letter
must appear at least once, but no letter may appear more than twice. More
generally, a k-letter word on an n-letter alphabet in which each letter must
appear at least a times and at most b times (for a, b ≥ 1, a < b) is called an
a−b augmented onto word. In terms of functions we are looking at those for
which a ≤ |f−1({j})| ≤ b for each j = 1, 2, . . . , n. Note that for b = a+ 1,
this is the same notion as that of “equitable words” from Theorem 4, and,
in fact, we focus on the case of a = 1, b = 2 in the next result. The proof
we offer, however, allows for generalization to the case of arbitrary a, b, and
is quite different from the one in [12].

Theorem 21. A U-Cycle of 1-2 augmented words exists for all n, k such
that n+ 1 ≤ k ≤ 2n− 1.

Proof. Since our word is onto, we know from [11] that we must have k ≥
n + 1 for a U-Cycle to exist. Furthermore, if k = 2n, the situation would
correspond to “doubly onto” words (that is, those in which every letter
appears exactly twice), and thus will not give a U-Cycle. This means that
the condition k+1 ≤ n ≤ 2k−1 is necessary for a U-Cycle of 1-2 augmented
words to exist.

As always, the vertices of the digraph will be labeled with k − 1 letter
words. There are two possibilities for the vertices: each of these k−1 letter

11

words will be either onto, or nearly onto; that is, each word will contain
every letter in the alphabet, or it will be missing exactly one letter. In
either case, vertices are words in which each letter occurs at most twice.
If a vertex v is missing exactly one letter of the alphabet, it will have
i(v) = o(v) = 1, because each incident edge must add the missing letter
so that our k-letter edge word is onto. If a vertex v is onto, it will have a
number of singleton letters r, and a number of paired letters 2(n− r) (that
is to say n − r pairs). When a letter is added to generate a k-letter word,
notice we cannot add any of the letters already paired and still get a “legal”
word on our edge; we must add a singleton, which will create a new pair.
Thus our edge words will all have r−1 singletons and n−r+1 pairs. Since
the number of allowed edges corresponds to the number of singleton letters
in our vertex word, i(v) = o(v) = r when the word is onto. Therefore the
graph is balanced. Note that we must have r + 2(n− r) = 2n− r = k − 1,
which implies that we must have r = 2n− k + 1 to begin with.

Notice that when our edge words are at maximum length, k = 2n − 1,
this will create vertex words with the fewest possible singleton letters with
which to construct new words. We claim that this is the most limiting
case, so if we can show connectedness in this case, it will also be shown
in less limited cases. Let k = 2n − 1. The vertices in such a digraph will
contain words of length k − 1 = 2n− 2. Notice that the vertex words will
always have an even number of letters. Thus when such a word is nearly
onto, it will be missing one letter, and contain two of every other letter.
Also, if such a word is onto, it will contain exactly two singletons, and the
remaining letters will be in pairs. Therefore, for any k − 1 letter word,
i(v) = o(v) ∈ {1, 2}.

Notice that in our digraph, each subsequent edge “adds” a letter to the
end of our word, and “drops” a letter from the beginning. For this reason,
we can discuss a means of choosing edges by which we can build our target
word in terms of merely “adding” a letter and “dropping” a letter, with the
knowledge that this corresponds to taking steps to traverse our digraph. To
show weak connectedness, we connect our starting vertex word to a fixed
target vertex word, namely A1A2...Ak−2Ak−1 = a1a1 . . . an−1an−1, where
the alphabet is {a1, . . . , an}. We will construct our target one letter at a
time, by manipulating the existing word until we can add the Ath

i letter in
its proper order using the following process. Start adding letters to the ex-
isting word until there are no letters a1 and then add two a1s in succession.
Then cause the letter composition to have at most one a2, and maintain
this situation until the block a1a1 is once again at the end of the word (we
may have to start rebuilding the target word anew for this to happen), and
then add a2. Drop the other a2 as soon as possible and maintain the word
with just one a2 until the block a1a1a2 reappears at the end of the word,

12

possibly by starting from scratch, when we can add the second a2 causing
the new “successful block” to be a1a1a2a2. Then add one and then another
a3 at the end of the word as before, and continue until we reach the target
word. This strategy works since we are always guaranteed two singletons
when there is at least one singleton. This process is illustrated for n = 5
with starting word bdabdece and target word aabbccdd. We proceed as
follows:

bdabdece→ dabdecec→ abdececb→ bdececba→ dececbaa→ ececbaab→

cecbaabd→ ecbaabdd→ cbaabdde→ baabddee→ aabddeec→ abddeecc

→ bddeecca→ ddeeccaa→ deeccaab→ eeccaabb→ eccaabbd→ ccaabbdd

→ caabbdde→ aabbddec→ abbddece→ bbddecea→ bddeceaa→ ddeceaab

→ deceaabb→ eceaabbc→ ceaabbcd→ eaabbcdd→ aabbcdde→ abbcddee

→ bbcddeea→ bcddeeaa→ cddeeaab→ ddeeaabb→ deeaabbc→ eeaabbcc

→ eaabbccd→ aabbccdd

In the above example, the words in boldface represent when we have to
start rebuilding the partial target word when it appears as the prefix to
the entire word, but only a one step detour is needed to accomplish this.
The above example is entirely canonical and the process works for all initial
words and all alphabet sizes.

Consider the case when k = 2n − 2. Vertex words will have length
k − 1 = 2n− 3, and we will have two cases: When vertex words are nearly
onto, they will contain one missing letter, one singleton and the remaining
letters in pairs, and thus i(v) = o(v) = 1. When vertex words are onto,
they will contain exactly 3 singletons, and the remaining letters in pairs.
Such words have i(v) = o(v) = 3. To exhibit weak connectivity, we adjust
the target vertex to a1a2a2 . . . an−2an−2an−1an−1. As k decreases, the
number of singletons in almost onto vertices increases, affording greater
flexibility in the same algorithm. In the most extreme case, we have k =
n + 1, and we let the target word be a1a2 . . . an−2an−1an−1. To prove
weak connectivity, we could introduce successive letters in the target word
one at a time, introducing double occurrences as a means of introducing
subsequent letters. For example with n = 5 and k = 6, we illustrate a
path from cebad to abcdd as follows (with boldface entries indicating the
addition of another letter in the target word):

cebad→ ebadc→ badce→ adceb→ dceba→ cebab→ ebabd→ babdc→

abdce→ bdcea→ dceab→ ceabc→ eabcd→ abcdd.

13

Variations of the same algorithm may be checked to establish weak con-
nectivity for all vertex word lengths in the allowable range, and thus we
conclude that a U-Cycle of k-letter 1-2 augmented words on an n-letter
alphabet exists for all n and k with k + 1 ≤ n ≤ 2k − 1.

We now consider the general case of augmented onto words.

Theorem 22. A U-Cycle of k-letter a-b augmented words onto an n-letter
alphabet exists for all n, k such that an+ 1 ≤ k ≤ bn− 1.

Proof. The restrictions on the word length are clearly necessary as before.
As in Theorem 20, the vertices of the digraph will be labeled with k−1 letter
words. There are two possibilities: each of these k − 1 letter words either
contain a single letter that appears a−1 times, or else all letters will appear
between a and b times. In the former case we have i(v) = o(v) = 1, and in
the latter case we have i(v) = o(v) = m, where m is the number of letters
that appear between a and b− 1 times (we call these letters non-maximal).

Consider the case when k = bn−b+1. Since vertex words are b short of
being entirely maximal, then we are guaranteed to have at least two non-
maximal letters whenever all letters are represented, and so we will be able
to apply the algorithm from Theorem 21 to get to a fixed target vertex such
as a1a1 . . . a1 . . . an−1 . . . an−1 consisting of b repeats of each letter. So, the
graph is connected when k = bn− b+ 1.

Consider the case when k = bn− 1. Then edge words will be of length
bn − 2 - that is, their length will be two letters short of every letter being
maximal. However, these two letters are not necessarily distinct, meaning
that we are not guaranteed to always have an additional letter as we were
in the algorithm for Theorem 21. In other words, while it is easy to say
how many letters we cannot add (it is m, the number of maximal letters),
it is hard to say how many distinct letters are not maximal. There are two
possibilities. Either all letters but one will be maximal, and one letter have
order b − 2 in our word, or all but two letters will be maximal, and those
two letters will have order b− 1.

Case 1: One letter of order b− 2. Since there is only one non-maximal
letter, we must add it. This will “cycle out” the first letter in our word. If
the first letter in our word is the same as our non-maximal letter, then it is
still the only non-maximal letter (since when we added it once, and cycled
it out once, the order did not change), and we must add it again. Since the
only time we are forced to add a letter is if there is one letter of order b−2,
we will never be forced to make a letter maximal. Eventually, we will raise
that letter’s order to b− 1, and thus force Case 2.

14

Case 2: Two letters of order b-1. In this case, we may add either letter
we wish. Since we are never forced to make a letter maximal, this shows
that the algorithm for Theorem 21 holds when k = bn−1, and so the graph
is connected. Other values of k lead to easier analyses as with Theorem
21.

3 U-Cycles on Lattice Paths

Lattice paths are a well-studied set of combinatorial objects; see, e.g., [13].
In two dimensions, a lattice path of length n is a sequence of points P1, ..., Pn

of Z×Z such that the `1 distance between Pi and Pi+1 is 1 for i = 1, ..., n−1.
It is common to use a string over the alphabet N,S,E,W to describe these
paths, where N,S correspond to positive and negative movement in the
y direction, respectively, and E,W correspond to positive and negative
movement in the x direction, respectively.

Suppose that we are given two positive integers n and k, and let Pn,k

be the set of the words over our alphabet corresponding to all lattice paths
of length n that begin at the origin and end up at a distance of at most
k from it. We will refer to elements of Pn,k both as paths and as words.
For instance, in the case of n = k = 3, P3,3 would be the set of all paths
ending at any destination (x, y) with the restriction that |x| + |y| ≤ 3. Of
course, there are several ways of constructing any a path to an endpoint.
For example we can get to (2, 1) via the paths EEN,ENE,NEE, which
all have length 3.

It has been shown in [1] that a U-Cycle of lattice paths in Pn,k exists in
the two-dimensional cartesian plane for all n, k. We will extend this result
in this section to three dimensions.

3.1 Three Dimensional Lattices

Let Pn,k be the set of the words on the alphabet Σ = {N,S,E,W,U,D}
corresponding to three-dimensional lattice paths of length n that start at
the origin and end up at a distance of at most k ≥ 1 from it. Let Πk be
the set of all points in the three-dimensional lattice with |x|+ |y|+ |z| ≤ k.

We first state and prove the following two key auxiliary results:

Lemma 23. In the digraph defined below, every vertex has degree 6 or it
is connected to some vertex of degree 6.

Proof. The digraph D in question consists of all strings over Σ representing

15

three dimensional lattice paths from the origin, of length n− 1, and ending
up at a distance ≤ k + 1 from the origin. There is an edge between v =
a1a2 . . . an−1 and w = b1b2 . . . bn−1 if aj = bj−1 for 2 ≤ j ≤ n − 1 and
the concatenation of v and w represents a lattice path in Pn,k. Consider a
vertex word in D. If our vertex word’s endpoint v lies within the interior
of Πk, i.e., in Πk−1, it must have i(v) = o(v) = 6. Other vertices have the
same indegree and outdegree which might equal 1, 2, or 3. All such vertices
lie on the boundary of Πk or Πk+1 and the differences in degrees depend
on whether they lie on the corner, edge, or face of the polyhedron.

We first show that every vertex of degree 1 is connected to a vertex of
degree 6. Every vertex of degree 1 corresponds to a path whose endpoint
is in a corner of Πk or Πk+1.

Consider a degree 1 vertex v1 associated with a word whose endpoint
lies one move outside of Πk. Such a vertex word must lead to an edge-word
whose endpoint lies in the corner of Πk. However, the associated vertex it
connects to might still be in Πk+1 since it might contain the same numbers
of the sybols in Σ. For example, with n = 16 and k = 4, the vertex

SSSSUDEWNNNNNNNNN

points only towards

SSSUDEWNNNNNNNNNS

which also has degree 1. Assume without loss of generality that the vertex
v1 has k+1 more U steps than D steps; an equal number of E and W steps;
and an equal number of N and S steps. In order to connect it, in multiple
steps, to a vertex of degree six, we cycle it until the letter U appears at the
front of the associated word, drop it, and replace it with a D. This makes
#(U)−#(D) = k − 1, while not changing the numbers of other letters, so
that the endpoint of the vertex is in Πk−1 and has degree six. The same
strategy works for vertices on the corner of Πk.

Let v2 be a vertex of degree 2 on an edge of Πk+1. Such a vertex might
point at two others both of which are also on the boundary of Πk+1 as seen
by the example where

SSUUDDNNNNEEEEEWW

transitions to
SUUDDNNNNEEEEEWWS

or
SUUDDNNNNEEEEEWWW.

16

Figure 2: Implications of degree 2. Cross-sectional view of Pn,k.

The general strategy for this case is the following: Assume without loss of
generality, that such a vertex has an equal number of Us and Ds, and that
we have #(N)−#(S) ≥ 2 or #(E)−#(W) ≥ 2. (If both of these differences
are 1, then we must have k = 1 which is not allowable.) Assuming that
#(N) − #(S) ≥ 2, we cycle the letters of the vertex until an N appears
at the front of the associated word, drop it, and replace it with an S.
This makes #(N)−#(S) two smaller than before, while not changing the
numbers of other letters, so that the vertex is in Πk−1 and has degree six.
The same strategy works for vertices on an edge of Πk.

Finally let v3 be a vertex of degree 3 on a face of Πk+1. The strategy
for this case is the following: Assume without loss of generality, that such
a vertex has #(U)−#(D) ≥ 2 or #(N)−#(S) ≥ 2 or #(E)−#(W) ≥ 2.
(If each of these differences are 1, then we must have k = 2 which is not
allowable.) Assuming that #(N) − #(S) ≥ 2, we cycle the letters of the
vertex until an N appears at the front of the associated word, drop it, and
replace it with an S. This makes #(N) − #(S) two smaller than before,
while not changing the numbers of other letters, so that the vertex is in
Πk−1 and has degree six. The same strategy works for vertices on a face of
Πk.

This proves the result.

Lemma 24. If n is odd, every vertex in V is connected to a vertex whose
corresponding path ends at the origin, and if n is even, every vertex in V

17

Figure 3: Implications of degree 3.

is connected to a vertex corresponding to a path ending at distance 1 from
the origin.

Proof. For a vertex to have a path that ends in the origin, it must have
equal numbers of each of the letters in a component direction, e.g., an equal
number of Ns and Ss. This is only possible if the vertex length, n − 1 is
even. If, however, n is even, then a vertex can only correspond to a path
which is “one move away” from ending at the origin, or in other words,
paths ending in (0, 0, 1) or (0, 1, 0), or (1, 0, 0).

Since every vertex in V has degree 6 or it is connected to some vertex
of degree 6, we need only consider beginning vertices with degree 6. Pick
one, and call this vertex vi.

Let ni, si, ei, wi, ui, and di be the number of N,S,E,W,U, and D moves
in the path of length n − 1 associated with vi. This vertex will be associ-
ated with a “word” containing n − 1 letters in the amounts specified. By
definition, vi corresponds to a path that ends at a distance at most k + 1
from the origin. Such a path must also end within one of 8 simplex-shaped
regions surrounding the origin. Without loss of generality, let us assume
that all three are positive, so we will be appending W,S, and D moves to
our word to connect it to a path ending at the target vertex near or at the
origin.

Since vi has degree six, any swap of adjacent elements is allowable, by
rotating until the two letters ab in question are at the beginning of the

18

word and then replacing the a by a b and then the b by an a. Using swaps
of adjacent elements, we re-order the path associated with vi such that all
the U moves are at the end, and preceded in turn by all the D, N , S, E
and W moves. Since the path associated with vi ends at a point where
x, y, z are positive, it lies somewhere to the North, East, and Up from the
origin. Exploiting the degree six “trump card”, we rotate appropriately
and replace as many Us by Ds as needed to bring the frequency of these
letters to within one, and then do the same with the other two pairs of
letters. Now if n is odd, we see from parity considerations that either each
of these differences is zero, or exactly two of these differences are one (and
the last zero). In the first case, we are at a vertex whose path begins at the
origin and we are done. In the second case, we replace the letter with the
larger frequecy in one category by a letter with the smaller frequency in the
second category to arrive at a vertex whose path begins at the origin. If
n is even we see that the number of unit differences is either one or three.
We are done in the former case since we are at a vertex whose path begins
at one of the three points (1, 0, 0,), (0, 1, 0), or (0, 0, 1). In the latter case
we reach one of these three vertices via a single swap of elements. This
completes the proof.

Theorem 25. For n ≥ k + 1 ≥ 4, there exists a universal cycle for all
paths in Pn,k in three dimensions. (If n ≤ k, all lattice paths are valid and
the result also holds true by deBruijn’s Theorem.)

Proof. Let V be the set of all words on the alphabet N,S,E,W,U,D corre-
sponding to lattice paths of length n− 1 which start at the origin and end
at a distance d ≤ k + 1 from it. These words are associated with vertices
in our digraph. As before, define the digraph D =< V, E >, with the edge-
set E being defined by letting there be an edge from v = a1a2 . . . an−1 to
w = b1b2 . . . bn−1 if aj = bj−1 for 2 ≤ j ≤ n − 1 and the concatenation of
v and w represents a lattice path in Pn,k. We seek to exhibit an Eulerian
path in D, by showing that D is balanced and weakly connected.

To show balancedness, we proceed as in the proof of Lemma 23. In fact,
the fact that the digraph is balanced is a consequence of the fact that it is
merely the numbers of letters of each type that determine whether or not
a vertex is in Pn,k, and the entire situation is illustrated in Figure 4.

Finally, we show weak connectedness. By Lemma 24, if n is odd, ev-
ery vertex in V is connected to a vertex whose corresponding path ends at
(0, 0, 0), and if n is even, every vertex in V is connected to a vertex corre-
sponding to a path ending at (without loss of generality) (0, 0, 1). We can
now show (as in the proof of Lemma 24) that each such terminal vertex is
connected to a canonical one, say one with letters appearing in consecutive

19

Figure 4: Three-dimensional endpoints.

blocks of the same letter. Therefore, the digraph is weakly connected, and
thus Eulerian, and so a U-Cycle exists.

Remark. It is not too hard to formulate and prove a result similar to
Theorem 25 in the case of m-dimensional lattice paths.

References

[1] A. Blanca, A. Godbole, On Universal Cycles for New Classes of Com-
binatorial Structures, SIAM J. Discrete Math. 25 (2011), 1832–1842.

[2] G. Brockman, B. Kay, E. Snively, On Universal Cycles of Labeled
Graphs,” Electr. J. Combinatorics 17 (2010), Paper R4.

[3] A. Campbell, B. Kay, A. Godbole, Contributions to the Theory of de
Bruijn Cycles, Integers: Electronic Journal of Combinatorial Number
Theory 14A (2014), Paper A2.

[4] M. Champlin, A. Godbole, B. Tomlinson, Universal Cycles of Comple-
mentary Classes, Congressus Numerantium 216 (2014), 33–38.

[5] F. Chung, P. Diaconis, R, Graham, Universal cycles for Combinatorial
Structures, Discrete Mathematics 110 (1992), 43–59.

20

[6] V. Horan, G. Hurlbert, Universal Cycles for Weak Orders, SIAM J.
Discrete Mathematics 27 (2013), 1360–1371.

[7] Z. Higgins, E. Kelley, B. Sieben, A. Godbole, Universal and Near-
Universal Cycles of Set Partitions, Electronic J. Combinatorics 22
(2015), Paper P4.48.

[8] G. Hurlbert, On Universal Cycles for k-subsets of an n-set, SIAM J.
Discrete Math. 7 (1994), 598–604.

[9] B. Jackson, Universal Cycles of k-subsets and k-permutations, Discrete
Mathematics 17 (1993), 141–150, 1993.

[10] A. King, A. Laubmeier, K. Orans, A. Godbole, Universal and Overlap
Cycles for Posets, Words, and Juggling Patterns, Graphs and Combi-
natorics 32 (2016), 1013–1025.

[11] B. LaBounty-Lay, A. Bechel, A. Godbole, “ Universal Cycles of Dis-
crete Functions,” Congressus Numerantium 189, 121–128, 2008.

[12] A. Leitner, A. Godbole, Universal Cycles of Restricted Classes of
Words, Discrete Mathematics 310 (2010), 3303–3309.

[13] S. Mohanty, Lattice Path Counting and Applications (Academic Press,
New York, 1979).

21

	1 Introduction
	2 New U-Cycles of Discrete Functions
	2.1 Monotone Non-Decreasing words.
	2.2 Small constructions.
	2.3 Lipschitz Words
	2.4 Cyclically Appearing Word Categories
	2.5 Application: Random Walks on the Honeycomb Lattice
	2.6 Augmented Onto Words

	3 U-Cycles on Lattice Paths
	3.1 Three Dimensional Lattices

